
SMART CONTRACT AUDIT

railgun_

Nov 23rd, 2021 | v. 1.0

score

100

PASS
Zokyo Security Team has

concluded that this smart contract

passes security qualifications and

bear no security or operational risk

Security Audit Score

1

RAILGUN Contract Audit

This document outlines the overall security of the RAILGUN smart contracts, evaluated by

Zokyo's Blockchain Security team.

Technical Summary

The scope of this audit was to analyze and document the RAILGUN smart contract
codebase for quality, security, and correctness.

The testable code is 98.2%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of

the contract, rather limited to an assessment of the logic and implementation. In order to

ensure a secure contract that's able to withstand the Ethereum network's fast-paced and

rapidly changing environment, we at Zokyo recommend that the RAILGUN contributors put
in place a bug bounty program to encourage further and active analysis of the smart
contract.

Testable Code

100%75%50%25%0%

your average

INDUSTRY STANDARD

There were no critical issues found during the audit.

Contract Status

low Risk

2

RAILGUN Contract Audit

3Auditing Strategy and Techniques Applied

5Executive Summary

6Structure and Organization of Document

7Complete Analysis

9Code Coverage and Test Results for all files

9Tests written by RAILGUN contributors

10Tests written by Zokyo Secured team

Table of Contents

Auditing Strategy and Techniques Applied

3

RAILGUN Contract Audit

The Smart contract's source code was taken from the RAILGUN repository:

Repository: https://github.com/Railgun-Privacy/contract/

commit/0418a0f1bf0e58e5b3bab8870112b7648ff20aca

Last commit: 97af307fa1d737d4526323acc3d0ef372c703417

Contracts under the scope:

Commitments;

Globals;

RailgunLogic.

For the logic system:

 Users can spend all their funds and only their funds, there is no hidden mint or burn in
the contract.

 Assuming high volume + a relayer system to pay gas, a user's actions can't be linked to
them (exception: deposits and withdraws can be linked to the depositing and
withdrawing addresses respectively).

For governance:

 Only a DAO vote has the ability to make the governance contract call any function on any
contract.

 A DAO vote can delegate the ability to call certain other contracts or functions to another
address (EOA or Contract).

 AA DAO vote can remove the ability to call certain other contracts or functions from
another address (EOA or Contract).

 Only the governance process can change the deployed code (Proxy pattern).

Additional requirements to check:

https://github.com/Railgun-Privacy/contract/commit/0418a0f1bf0e58e5b3bab8870112b7648ff20aca
https://github.com/Railgun-Privacy/contract/commit/0418a0f1bf0e58e5b3bab8870112b7648ff20aca

4

RAILGUN Contract Audit

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;

Documentation and code comments match logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices in efficient use of gas, without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the latest vulnerabilities;

Whether the code meets best practices in code readability, etc.

Zokyo's Security Team has followed best practices and industry-standard techniques to
verify the implementation of RAILGUN smart contracts. To do so, the code is reviewed line-
by-line by our smart contract developers, documenting any issues as they are discovered.
Part of this work includes writing a unit test suite using the Truffle testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

01 Due diligence in assessing the overall

code quality of the codebase.

03 Testing contract logic against common

and uncommon attack vectors.

02 Cross-comparison with other, similar

smart contracts by industry leaders.

04 Thorough, manual review of the

codebase, line-by-line.

The Zokyo team has conducted a security audit of the given codebase. The contracts
provided for an audit are well written and structured. All the findings within the auditing
process are presented in this document.

During the auditing process, our auditor's team found 2 issues which were successfully

resolved by the RAILGUN contributors.

Taking into consideration the audit results, we can state that the audited smart contracts are

safe to deploy and bear no security or operational risk for neither contract owner, nor end

user. Hence, the score of the audit is set to 100 to the provided codebase.

5

RAILGUN Contract Audit

Executive Summary

The issue has minimal impact on the

contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the ability of the
contract to compile or operate in a
significant way.

Critical

For ease of navigation, sections are arranged from most critical to least critical. Issues are

tagged “Resolved” or “Unresolved” depending on whether they have been fixed or
addressed. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure and Organization of Document

6

RAILGUN Contract Audit

Complete Analysis

7

RAILGUN Contract Audit

Unsafe transfer usage

low resolved

In contract RailgunLogic.sol in functions and is used
function for transferring fee to the treasury contract. Since transfers have fixed 2,300 gas for

executing it is unsafe to use it with new versions of solidity.

transact() generateDeposit() transfer()

Recommendation:
Consider to use instead of .call() transfer()

Re-audit:
Fixed. Replaced with .transfer() call()

Misleading NatSpec comment

informational resolved

In Commitments.sol contracts for function provided misleading comments in

lines 138-142. In section and descriptions in not valid for the functionality.

insertLeaves()
@notice @dev

Recommendation:
Consider fixing the comment.

8

RAILGUN Contract Audit

PassAccess Management Hierarchy Pass

PassArithmetic Over/Under Flows Pass

GlobalsRailgunLogicCommitments

PassPassDelegatecall

PassPassHidden Malicious Code

PassPassUnchecked CALL
Return Values

PassPassExternal Contract Referencing

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

PassPassPool Asset Security (backdoors in
the underlying ERC-20)

PassPass Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Re-entrancy

PassPassUnexpected Ether

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of Randomness)

PassPassShort Address/Parameter Attack

PassPassRace Conditions/Front Running

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication

Code Coverage and Test Results for all files

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Tests are written by the RAILGUN contributors

Code Coverage

Test Results

9

RAILGUN Contract Audit

Commitments.sol

RailgunLogic.sol

logic\

Globals.sol

FILE

All files

94.59

97.30

96.40

100

% STMTS

96.40

100

56.23

61.11

100

% BRANCH

61.11

75

100

88.89

100

% FUNCS

88.89

92.11

100

97.30

100

% LINES

97.30

245, 250, 253

Uncovered Lines

Logic/Commitments

Logic/RailgunLogic

13 passing (9m)

✓
✓

Should initialize the tree correctly

Should update the tree correctly (60203ms)

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓

Should verify proofs (19092ms)

Should deposit token correctly (19962ms)

Should collect treasury fees correctly (44755ms)

Should deposit with 2 outputs correctly (22064ms)

Should deposit with 3 outputs correctly (22560ms)

Should deposit, do an internal transaction, and withdraw (66361ms)

Should transact with large circuit (125395ms)

Should deposit and generate commitments correctly (935ms)

Should be able to spend from generated commitment (23790ms)

Should do batch transactions(67603ms)

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Tests written by Zokyo Security team

Code Coverage

Test Results

10

RAILGUN Contract Audit

Commitments.sol

RailgunLogic.sol

logic\

Globals.sol

FILE

All files

100

97.63

98.20

100

% STMTS

98.20

100

77.08

79.63

100

% BRANCH

79.63

100

100

100

100

% FUNCS

100

100

100

100

100

% LINES

100

Uncovered Lines

Contract: Commitments

Contract: RailgunLogic

✓
✓
✓

should initialize merkle tree correct (48ms)

should update the tree correctly (1156ms)

should create a new tree correct (93ms)

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓

Should initialize railgun logic correct (144ms)

Should change treasury correct (211ms)

Should revert change treasury by not owner(92ms)

Should change fee correct (117ms)

Should revert change fee by not owner

Should verify proofs (19469ms)

Should deposit whitelisted token correct (20339ms)

Should deposit and withdraw whitelisted token correct (47679ms)

Should revert deposit when adaptID address is incorrect (21244ms)

Should revert deposit when the merkle root is incorrect(21037ms)

As part of our work assisting RAILGUN in verifying the correctness of their contract code,
our team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the RAILGUN
contract requirements for details about issuance amounts and how the system handles
these.

11

RAILGUN Contract Audit

19 passing (4m)

✓
✓
✓
✓
✓
✓

Should revert deposit not whitelisted token (21518ms)

Should collect treasury fees correctly (46725ms)

Should generateDeposit and withdraw token from the generated commitments(24076ms)

Should revert generateDeposit if fee not paid (77ms)

Should revert generateDeposit if deposited amount is zero

Should revert generateDeposit if deposit not whitelisted token (89ms)

We are grateful to have been given the opportunity to work with the
RAILGUN contributors.

The statements made in this document should not be interpreted as
investment or legal advice, nor should its authors be held
accountable for decisions made based on them.

Zokyo's Security Team recommends that the RAILGUN contributors
put in place a bug bounty program to encourage further analysis of the
smart contract by third parties.

