
SMART CONTRACT AUDIT

December 21st 2022 | v.	1.0

score

96

PASS
Zokyo Security has concluded that

this smart contract passes security

qualifications to be listed on digital

asset exchanges.

Security Audit Score

1

Railgun Smart Contract Audit

This document outlines the overall security of the RAILGUN smart contracts evaluated by
the Zokyo Security team.

Technical Summary

The scope of this audit was to analyze and document the RAILGUN smart contract
codebase for quality, security, and correctness.

Contract Status

low Risk

Testable Code

100% of the code is testable, which is above the industry standard of 95%.

There were 0 critical issues found during the audit. (See Complete Analysis

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract but rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that can withstand the Ethereum network’s fast-paced and rapidly
changing environment, we recommend that the RAILGUN contributors put in place a bug
bounty program to encourage further active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

https://docs.google.com/document/d/1qsUooQ6vyEPcR1MDvblWt9RbvHeRGKyKt4khLDQIKF4/edit#heading=h.y413rcm4r1gs

2

Railgun Smart Contract Audit

6Complete Analysis

11Code Coverage and Test Results for all files written by Zokyo Security

4Executive Summary

5Structure and Organization of the Document

3Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

3

Railgun Smart Contract Audit

Within the scope of this audit, the team of auditors reviewed the following contract(s):

logic/Commitments.sol

logic/RailgunLogic.sol

logic/RailgunSmartWallet.sol

The source code of the smart contract was taken from the RAILGUN repository:  
https://github.com/Railgun-Privacy/contract/commit

Last commit: 4385ec73bf7d0da283123e8a3ac3900216cfc3f0

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Testing contracts logic against common
and uncommon attack vectors.

04 Thorough manual review of the
codebase line by line.

Throughout the review process, care was taken to ensure that contracts:

Documentation and code comments match logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices inefficient use of gas, without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the latest vulnerabilities;

Whether the code meets best practices in code readability, etc.

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of RAILGUN smart contracts. To do so, the code was reviewed line by line by
our smart contract developers, who documented even minor issues as they were discovered.
Part of this work includes writing a test suite using the Truffle testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

https://github.com/Railgun-Privacy/contract/commit

4

Railgun Smart Contract Audit

Executive Summary

 Zokyo auditing team has run a deep investigation of given code. The contracts are in
good condition, well written and structured.

 During the auditing process, there were some issues with medium severity and
informational issues found. After the technical review of fixes from RAILGUN contributors,
we can state issues are resolved, unresolved and invalid in the doc accordingly.

 All the mentioned findings may have an effect only in case of specific conditions
performed by the contract owner and the investors interacting with it.

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Invalid” depending on
whether they have been fixed or addressed. The issues that are tagged as “Verified” contain
unclear or suspicious functionality that either needs explanation from the Client or remains
disregarded by the Client. Furthermore, the severity of each issue is written as assessed by
the risk of exploitation or other unexpected or otherwise unsafe behavior:

Structure and Organization of the Document

5

Railgun Smart Contract Audit

Complete Analysis

6

Railgun Smart Contract Audit

Findings summary

ResolvedMediumPossible re-entrancy2

Unresolved3 InformationalUnnecessary contract name specified

RiskTitle# Status

InvalidInformationalStorage slots amount increased5

ResolvedMediumUnchecked possible zero address1

InvalidInformationalAdd information about 4 slots gap4

Medium Resolved

Transaction validation is out of the scope

File: RailgunLogic.sol

Function: validateTransaction

Details:

The current implementation of the in-scope functions does not validate unshieldPreimage to
contain a correct value. Without such validation, anyone could call a function providing its
own address and get all tokens.

Recommendation:

make sure Verifier.verify function is audited and does all necessary verifications and
validations."

Medium Resolved

Possible re-entrancy

File: RailgunSmartWallet.sol

Function: transact

Details:

In the case there'll be an ERC20 token with the callback functionality within the transfer
method or an ERC721 within the transferFrom method, it's possible to have a re-entrancy
attack.

Recommendation:

make sure that the same Transaction could not be sent twice withing one blockchain tx. This
could be done, for example, by marking the hash as processed before sending any tokens.

7

Railgun Smart Contract Audit

8

Railgun Smart Contract Audit

Informational Unresolved

Unnecessary contract name specified

File: RailgunLogic.sol

Function: transferTokenIn

Details:

While calling the getFee function on the line#258 the third argument is specified as:
RailgunLogic.shieldFee. We double-checked the code and there is no any reason of clarifying
the contract name for the given state variable

Recommendation:

replace the argument with simple shieldFee

Informational Invalid

Add information about 4 slots gap

File: RailgunLogic.sol

Details:

Because the contract was moved upper in the storage by 40 slots and 3 more slots were
added in the GAP for the currently unused variables (depositFee, withdrawFee, transferFee)
it would be nice to add a comment or even put them as the separate variable to make sure
none in the newest versions (let's say in a year or two) will use those slots.

Recommendation:

define __gap as the array of 40 elements and add additional variable after to contain the
dirty 3 slots

9

Railgun Smart Contract Audit

Informational Invalid

Storage slots amount increased

"File: RailgunLogic.sol

Details:

Decreasing the __gap in the Commitments by 40 and adding the __gap as an array of 43
elements moved the three previously used variable data into the end of the __gap. But then
adding 6 additional variables that occupy 5 slots created an overflow in the storage layout.
It should be good if you didn't inhere that contract and should not overlap any data.

Recommendation:

Decrease the __gap in the RailgunLogic by 5 elements"

Access Management Hierarchy

Arithmetic Over/Under Flows

logic/Commitments.sol

logic/RailgunLogic.sol

logic/RailgunSmartWallet.sol

Delegatecall

Hidden Malicious Code

Unchecked CALL
Return Values

External Contract Referencing

General Denial Of Service (DOS)

Floating Points and Precision

Signatures Replay

Pool Asset Security (backdoors in the
underlying ERC-20)

Re-entrancy

Unexpected Ether

Default Public Visibility

Entropy Illusion (Lack of Randomness)

Short Address/ Parameter Attack

Race Conditions / Front Running

Uninitialized Storage Pointers

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

PassTx.Origin Authentication

10

Railgun Smart Contract Audit

Commitments
#doubleInit
✓ fails if twice initializing
#hashLeftRight
✓ hashLeftRight
#getInsertionTreeNumberAndStartingIndex
✓ create new tree
#insertLeaves
✓ check tree number and starting index after inserting leaves
✓ check tree number and starting index after inserting leaves with loop
#changeFee
✓ check event after changing fee
✓ fails if caller is not the owner
✓ fails if shield fee exceeds 50%
✓ fails if unshield fee exceeds 50%
#getFee
✓ check fee
#getTokenID
✓ get ERC20 TokenID
✓ get ERC721 TokenID
#hashCommitment
✓ hashCommitment ERC20
✓ hashCommitment ERC721
#validateCommitmentPreimage
✓ validateCommitmentPreimage ERC20
✓ fails validateCommitmentPreimage ERC20 if npk doesnt exist
✓ return false if token in blocklist
✓ fails validateCommitmentPreimage ERC20 if value equals 0
✓ validateCommitmentPreimage ERC721

As a part of our work assisting RAILGUN in verifying the correctness of their contracts code,
our team was responsible for writing integration tests using the Truffle testing framework.

The tests were based on the functionality of the code, as well as a review of the RAILGUN
contracts requirements for details about issuance amounts and how the system handles
these.

Tests written by Zokyo Security

Code Coverage and Test Results for all files

11

Railgun Smart Contract Audit

#addVector
✓ check vector after adding
✓ fails if caller is not the owner
#removeVector
✓ check vector after removing
✓ fails if caller is not the owner
#sumCommitments
✓ sumCommitments
#accumulateAndNullifyTransactionStub
✓ accumulateAndNullifyTransactionStub
#transferTokenIn
✓ transferTokenIn ERC20
✓ transferTokenIn ERC721
✓ transferTokenIn ERC1155
#transferTokenOut
✓ transferTokenOut ERC20
✓ transferTokenOut ERC721
✓ transferTokenOut ERC1155
#validateTransaction
✓ validateTransaction when UnshieldType is NONE
✓ validateTransaction when UnshieldType is NORMAL
✓ fails with error 8
✓ fails with error 7
✓ fails with error 6
✓ validateTransaction with nullfiller
✓ fails with error 4
✓ fails with error 1
✓ fails with error 2
✓ fails with error 3

RailgunSmartWallet
✓ check lastEventBlock equals transaction blockNumber after transact NORMAL
✓ fails if transaction isn't valid
#shield
✓ success shield ERC-20
✓ Invalid preimage data
#transact
✓ check lastEventBlock equals transaction blockNumber after transact ERC-20

48 passing (31s)

12

Railgun Smart Contract Audit

13

Railgun Smart Contract Audit

Commitments.sol 100

100

100

100

100 100

100100

RailgunLogic.sol

RailgunSmartWallet.sol

100

100

100

100

100 100

100 100

FILE % STMTS % BRANCH % FUNCS % LINES % Uncovered

 Lines

All Files 100 100 100 100

Globals.sol

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

We are grateful for the opportunity to work with the
.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the put in place a
bug bounty program to encourage further analysis of the smart
contract by third parties.

RAILGUN
contributors

RAILGUN contributors

