
SMART CONTRACT AUDIT

Nov 23rd, 2021 | v. 1.0



100
Score

PASS
Zokyo Security Team has 
concluded that this smart 
contract passes security 
qualifications and bear no 
security or operational risk



This document outlines the overall security of the RAILGUN smart contracts, evaluated by 
Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the RAILGUN smart contract codebase 
for quality, security, and correctness.

. . .

1

RAILGUN Contract Audit

There were no critical issues found during the audit.

Contract Status

low Risk

Testable Code

The testable code is 98.2%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of 
the contract, rather limited to an assessment of the logic and implementation. In order to 
ensure a secure contract that's able to withstand the Ethereum network's fast-paced and 
rapidly changing environment, we at Zokyo recommend that the RAILGUN team put in place a 
bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD



Table of Contents

. . .

2

RAILGUN Contract Audit

3Auditing Strategy and Techniques Applied

5Summary

6Structure​ ​and​ ​Organization​ ​of​ ​Document

7Complete​ ​Analysis

9Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

9Tests written by RAILGUN team

11Tests written by Zokyo Secured team



3

RAILGUN Contract Audit

Auditing Strategy and Techniques Applied

. . .

The Smart contract's source code was taken from the RAILGUN repository.

Repository:
https://github.com/Railgun-Privacy/contract/
commit/0418a0f1bf0e58e5b3bab8870112b7648ff20aca

Last commit:
97af307fa1d737d4526323acc3d0ef372c703417

Contracts under the scope:

Commitments;
Globals;
RailgunLogic.

Additional requirements to check:

For the logic system:
1) Users can spend all their funds and only their funds, there is no hidden mint or 

burn in the contract.

Check result – confirmed.

2) Assuming high volume + a relayer system to pay gas, a user's actions can't be 
linked to them (exception: deposits and withdraws can be linked to the 
depositing and withdrawing addresses respectively).

Check result – confirmed.

For governance:
1) Only a DAO vote has the ability to make the governance contract call any 

function on any contract.

Check result – confirmed.

2) A DAO vote can delegate the ability to call certain other contracts or functions 
to another address (EOA or Contract).

Check result – confirmed.

https://github.com/Railgun-Privacy/contract/commit/0418a0f1bf0e58e5b3bab8870112b7648ff20aca
https://github.com/Railgun-Privacy/contract/commit/0418a0f1bf0e58e5b3bab8870112b7648ff20aca


4

RAILGUN Contract Audit

. . .

Zokyo's Security Team has followed best practices and industry-standard techniques to verify 
the implementation of RAILGUN smart contracts. To do so, the code is reviewed line-by-line by 
our smart contract developers, documenting any issues as they are discovered. Part of this 
work includes writing a unit test suite using the Truffle testing framework. In summary, our 
strategies consist largely of manual collaboration between multiple team members at each 
stage of the review:

1
Due diligence in assessing the overall 
code quality of the codebase.

2
Cross-comparison with other, similar 
smart contracts by industry leaders.

3
Testing contract logic against common 
and uncommon attack vectors.

4
Thorough, manual review of the 
codebase, line-by-line.

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

3) A DAO vote can remove the ability to call certain other contracts or functions 
from another address (EOA or Contract).

Check result – confirmed.

4) Only the governance process can change the deployed code (Proxy pattern).

Check result – confirmed.



Summary

. . .

5

RAILGUN Contract Audit

The Zokyo team has conducted a security audit of the given codebase. The contracts provided 
for an audit are well written and structured. All the findings within the auditing process are 
presented in this document.

During the auditing process, our auditor's team found 2 issues which were successfully 
resolved by the RAILGUN team.

Taking into consideration the audit results, we can state that the audited smart contracts are 
safe to deploy and bear no security or operational risk for neither contract owner, nor end 
user. Hence, the score of the audit is set to 100 to the provided codebase.



. . .

6

RAILGUN Contract Audit

Structure​ ​and​ ​Organization​ ​of​ ​Document

For ease of navigation, sections are arranged from most critical to least critical. Issues are 
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed. 
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or 
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the 
contract’s ability to operate.

Low

The issue has no impact on the contract’s 
ability to operate.

Informational​

The issue affects the ability of the contract 
to compile or operate in a significant way.

High

The issue affects the ability of the contract 
to operate in a way that doesn’t significantly 
hinder its behavior.

Medium

The issue affects the ability of the contract 
to compile or operate in a significant way.

Critical



Complete​ ​Analysis

. . .

7

RAILGUN Contract Audit

Unsafe transfer usage

LOW

In contract RailgunLogic.sol in functions transact() and generateDeposit() is used transfer() 
function for transferring fee to the treasury contract. Since transfers have fixed 2,300 gas for 
executing it is unsafe to use it with new versions of solidity.

Recommendation:
Consider to use call() instead of transfer().

Re-audit:
Fixed. Replaced transfer() with call().

Misleading NatSpec comment

informational

In Commitments.sol contracts for function insertLeaves() provided misleading comments in 
lines 138-142. In section @notice and @dev descriptions in not valid for the functionality.

Recommendation:
Consider fixing the comment.



. . .

8

RAILGUN Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Commitments

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

RailgunLogic

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Globals



. . .

9

RAILGUN Contract Audit

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

Tests are written by the RAILGUN team

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

FILE

logic/

Commitments.sol

Globals.sol

UNCOVERED LINES

96.40

94.59

100.00

% STMTS

61.11

100.00

100.00

% BRANCH

88.89

75.00

100.00

% FUNCS

97.30 245, 250, 253

92.11

100.00

RailgunLogic.sol 97.30 56.23 100.00 100.00

% LINES

All files 96.40 61.11 88.89 97.30

Test Results 

Logic/Commitments
✓ Should initialize the tree correctly
✓ Should update the tree correctly

Logic/RailgunLogic
✓ Should verify proofs
✓ Should deposit token correctly
✓ Should collect treasury fees correctly
✓ Should deposit with 2 outputs correctly 
✓ Should deposit with 3 outputs correctly
✓ Should deposit and withdraw
✓ Should deposit, do an internal transaction, and withdraw
✓ Should transact with large circuit
✓ Should deposit and generate commitments correctly
✓ Should be able to spend from generated commitment



. . .

10

RAILGUN Contract Audit

✓ Should do batch transactions

13 passing (9m)



. . .

11

RAILGUN Contract Audit

Tests written by Zokyo Security team

As part of our work assisting RAILGUN in verifying the correctness of their contract code, our 
team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the RAILGUN contract 
requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

FILE

logic/

Commitments.sol

Globals.sol

UNCOVERED LINES

98.20

100.00

100.00

% STMTS

79.63

100.00

100.00

% BRANCH

100.00

100.00

100.00

% FUNCS

100.00

100.00

100.00

RailgunLogic.sol 97.63 77.08 100.00 100.00

% LINES

All files 98.20 79.63 100.00 100.00

Test Results 

Contract: Commitments
✓ should initialize merkle tree correct
✓ should update the tree correctly
✓ should create a new tree correct

Contract: RailgunLogic
✓ Should initialize railgun logic correct
✓ Should change treasury correct
✓ Should revert change treasury by not owner
✓ Should change fee correct
✓ Should revert change fee by not owner



. . .

12

RAILGUN Contract Audit

✓ Should verify proofs
✓ Should deposit whitelisted token correct
✓ Should deposit and withdraw whitelisted token correct
✓ Should revert deposit when adaptID address is incorrect
✓ Should revert deposit when the merkle root is incorrect
✓ Should revert deposit not whitelisted token
✓ Should collect treasury fees correctly
✓ Should generateDeposit and withdraw token from the generated commitments
✓ Should revert generateDeposit if fee not paid
✓ Should revert generateDeposit if deposited amount is zero
✓ Should revert generateDeposit if deposit not whitelisted token

19 passing (4m)



We are grateful to have been given the opportunity to work 
with the RAILGUN team.



The statements made in this document should not be 
interpreted as investment or legal advice, nor should its 
authors be held accountable for decisions made based 
on them.



Zokyo's Security Team recommends that the RAILGUN team 
put in place a bug bounty program to encourage further 
analysis of the smart contract by third parties.


